## Chapter 5 Assessment

1. Choose one of the following exercises:
(a) Find the volume under the surface $z=x^{2} y$ and above the triangle in the $x y$-plane with vertices $(1,0),(2,1)$, and $(4,0)$.
(b) Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $z=0$ and $y+z=3$.
(c) Find the volume above the paraboloid $z=x^{2}+y^{2}$ and below the half-cone $z=\sqrt{x^{2}+y^{2}}$.
2. Choose one of the following exercises:
(a) Consider the lamina that occupies the region $D$ bounded by the parabola $x=1-y^{2}$ and the coordinate axes in the first quadrant with density function $\rho(x, y)=y$. Find the mass and center of mass of the lamina.
(b) A lamina occupies the part of the disk $x^{2}+y^{2} \leq a^{2}$ that lies in the first quadrant. Find the centroid of the lamina. Find the center of mass of the lamina if the density function is $\rho(x, y)=x y^{2}$.
(c) Find the centroid of a right circular cone with height $h$ and base radius $a$. (Place the cone so that its base is in the $x y$-plane with center at the origin and its axis along the positive $z$-axis.)
3. Choose one of the following exercises:
(a) Use the transformation $u=x-y, v=x+y$ to evaluate

$$
\iint_{R} \frac{x-y}{x+y} d A
$$

where $R$ is the square with vertices $(0,2),(1,1),(2,2)$, and $(1,3)$.
(b) Use the transformation $x=u^{2}, y=v^{2}, z=w^{2}$ to find the volume of the region bounded by the surface $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$ and the coordinate planes.
(c) Use the change of variables formula and an appropriate transformation to evaluate $\iint_{R} x y d A$, where $R$ is the square with vertices $(0,0),(1,1),(2,0)$, and $(1,-1)$.

