Chapter 6 Assessment

1. Choose one of the following exercises:
(a) Find the work done in moving a particle from the point $(3,0,0)$ to the point $(0, \pi / 2,3)$ in the force field $\mathbf{F}(x, y, z)=\langle z, x, y\rangle$. (a) along a straight line; (b) along the helix $\mathbf{r}(t)=\langle 3 \cos (t), t, 3 \sin (t)\rangle$.
(b) Use Green's Theorem to evaluate

$$
\oint_{C} \sqrt{1+x^{3}} d x+2 x y d y
$$

where C is the triangle with vertices $(0,0),(1,0)$, and $(1,3)$ oriented counterclockwise.
(c) Let $\mathbf{F}(x, y, z)=\left\langle 4 x^{3} y^{2}-2 x y^{3}, 2 x^{4} y-3 x^{2} y^{2}+4 y^{3}\right\rangle$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the curve $\mathbf{r}(t)=\langle 1+\sin (\pi t), 2 t+\cos (\pi t)\rangle$ with $0 \leq t \leq 1$.
2. Choose one of the following exercises:
(a) Show that there is no vector field, \mathbf{G}, such that $\nabla \times \mathbf{G}=\left\langle 2 x, 3 y z,-x z^{2}\right\rangle$.
(b) Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}(x, y, z)=\langle x z,-2 y, 3 x\rangle$ and S is the sphere $x^{2}+y^{2}+z^{2}=4$ with outward orientation.
(c) Use Stokes' Theorem to evaluate $\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}(x, y, z)=\left\langle x^{2} y z, y z^{2}, z^{3} e^{x y}\right\rangle$, S is the part of the sphere $x^{2}+y^{2}+z^{2}=5$ that lies above the plane $z=1$, and S is oriented upward.
3. Choose one of the following exercises:
(a) Compute the outward flux of

$$
\mathbf{F}(x, y, z)=\frac{\langle x, y, z\rangle}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

through the ellipsoid $4 x^{2}+9 y^{2}+6 z^{2}=36$.
(b) Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=$ $\left\langle x^{3}, y^{3}, z^{3}\right\rangle$ and S is the surface of the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $z=0$ and $z=2$.
(c) Use the Divergence Theorem to evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}(x, y, z)=\left\langle z^{2} x, y^{3} / 3+\right.$ $\left.\tan (z), x^{2} z+y^{2}\right\rangle$ and S is the top half of the sphere $x^{2}+y^{2}+z^{2}=1$. [Hint: Note that S is not a closed surface. First, compute the integrals over S_{1} and S_{2}, where S_{1} is the disk $x^{2}+y^{2} \leq 1$, oriented downward, and $S_{2}=S \cup S_{1}$ (closed, div thm).]

