Final Assessment (Due no later than 8am, Tue Dec 8th.)

Choose one lettered exercise from each of the 5 sections below. Write them up according to the usual style guidelines (with above and beyond for each), scan them to pdf and submit the pdf to canvas.

- 1. Choose one of the following exercises:
 - (a) Find an equation of the plane that is parallel to the plane x+5y-z+8=0 and contains the point (1,1,4).
 - (b) True or false? Explain your reasoning.
 - i. If $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$, then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.
 - ii. If $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.
 - iii. If $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$ and $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.
 - (c) Sketch the surface whose equation in spherical coordinates is $\rho = a(1 \cos(\varphi))$ where a > 0 is a constant. Which familiar fruit does the surface resemble?
- 2. Choose one of the following exercises:
 - (a) Find $\mathbf{T}(0)$, $\mathbf{N}(0)$, and $\mathbf{B}(0)$ for the curve

$$\mathbf{r}(t) = \left\langle 2\cos(t), \ 2\cos(t) + \frac{3}{\sqrt{5}}\sin(t), \ \cos(t) - \frac{6}{\sqrt{5}}\sin(t) \right\rangle.$$

- (b) At time t = 0 a particle at the origin of an xyz-coordinate system has a velocity vector of $\mathbf{v}_0 = \langle 1, 2, -1 \rangle$. The acceleration function of the particle is $\mathbf{a}(t) = \langle 2t^2, 1, \cos(2t) \rangle$.
 - i. Find the position function of the particle.
 - ii. Find the speed of the particle at time t=1.
- (c) Find the arc length parameterization, $\ell(s)$, of the line through P(-1,4,3) and Q(0,2,5) that orients in the direction of \vec{PQ} and has $\ell(0) = P$.
- 3. Choose one of the following exercises:
 - (a) Find all points on the surface z = 2 xy at which the normal line passes through the origin.
 - (b) Locate all relative minima, relative maxima, and saddle points of the function $f(x,y) = x^2 + 3xy + 3y^2 6x + 3y$.
 - (c) Respond to the questions in a blended narrative (i.e. don't address (i), (ii), and (iii) separately, but rather connect them in a single narrative):
 - i. How are the directional derivative and the gradient of a function related?
 - ii. Under what conditions is the directional derivative of a differentiable function 0?
 - iii. In what direction does the directional derivative of a differentiable function have its maximum value? Its minimum value?
- 4. Choose one of the following exercises:

- (a) Find the centroid of the solid bounded by $y = x^2$, z = 0, and y + z = 4.
- (b) Use the transformation u = x 3y, v = 3x + y to find

$$\iint_{R} \frac{x - 3y}{(3x + y)^2} \, dA$$

where R is the rectangular region enclosed by the lines x-3y=0, x-3y=4, 3x+y=1, and 3x+y=3.

- (c) Use a double integral to find the area of the region enclosed by the rose $r = \cos(3\theta)$.
- 5. Choose one of the following exercises:
 - (a) Let the surface, S, be the portion of the paraboloid $z=1-x^2-y^2$ for which $z\geq 0$, and let C be the circle $x^2+y^2=1$ that forms the boundary of S as it hits the xy-plane. Assuming that S is oriented up, build the integrals and use Sage/cocalc (or similar) to evaluate and verify Stokes' Theorem in the case where

$$\mathbf{F} = \langle x^2y - z^2, \ y^3 - x, \ 2x + 3z - 1 \rangle.$$

- (b) Evaluate $\oint_C y \, dx x \, dy$ where C is the cardioid $r = a(1 + \cos(\theta))$ with $0 \le \theta \le 2\pi$ and a > 0 a constant.
- (c) Use the Divergence Theorem to find the flux of \mathbf{F} across the surface S with outward orientation where

$$\mathbf{F} = \langle x - z, \ y - x, \ z - y \rangle$$

and S is the surface of the cylindrical solid bounded by $x^2 + y^2 = a^2$, z = 0, and z = 1.